Influence of complement on neutrophil extracellular trap release induced by bacteria

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Influence of complement on neutrophil extracellular trap release induced by bacteria. / Palmer, Lisa Joanne; Damgaard, Christian; Holmstrup, Palle; Nielsen, Claus Henrik.

In: Journal of Periodontal Research, Vol. 51, No. 1, 02.2016, p. 70-76.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Palmer, LJ, Damgaard, C, Holmstrup, P & Nielsen, CH 2016, 'Influence of complement on neutrophil extracellular trap release induced by bacteria', Journal of Periodontal Research, vol. 51, no. 1, pp. 70-76. https://doi.org/10.1111/jre.12284

APA

Palmer, L. J., Damgaard, C., Holmstrup, P., & Nielsen, C. H. (2016). Influence of complement on neutrophil extracellular trap release induced by bacteria. Journal of Periodontal Research, 51(1), 70-76. https://doi.org/10.1111/jre.12284

Vancouver

Palmer LJ, Damgaard C, Holmstrup P, Nielsen CH. Influence of complement on neutrophil extracellular trap release induced by bacteria. Journal of Periodontal Research. 2016 Feb;51(1):70-76. https://doi.org/10.1111/jre.12284

Author

Palmer, Lisa Joanne ; Damgaard, Christian ; Holmstrup, Palle ; Nielsen, Claus Henrik. / Influence of complement on neutrophil extracellular trap release induced by bacteria. In: Journal of Periodontal Research. 2016 ; Vol. 51, No. 1. pp. 70-76.

Bibtex

@article{2cd70e54193641dc8d54e58c25629c52,
title = "Influence of complement on neutrophil extracellular trap release induced by bacteria",
abstract = "Background and ObjectivesNeutrophil extracellular trap (NET) release has generally been studied in the absence of serum, or at low concentrations of untreated or heat-inactivated serum. The influence of serum complement on NET release therefore remains unclear. We examined the DNA release induced by Staphylococcus aureus and three oral bacteria: Actinomyces viscosus, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum subsp. vincettii.Material and MethodsBacteria-stimulated NET release from the neutrophils of healthy donors was measured fluorometrically. Various complement containing and complement blocking conditions were used, including heat inactivation of the serum and antibody blockade of complement receptors 1 (CR1, CD35) and 3 (CR3, CD11b/CD18).ResultsWhile the presence of serum markedly enhanced NET release induced by S. aureus, A. actinomycetemcomitans, and to a lesser extent by A. viscosus, there was no enhancement of NET release induced by F. nucleatum. The serum-mediated enhancement of NET release by A. actinomycetemcomitans was neutralized by heat inactivation of serum complement, while this was not the case for S. aureus. Blockade of CR1, significantly reduced NET release induced by S. aureus, A. actinomycetemcomitans and A. viscosus, while blockade of CR3, had no effect. However, opsonization of S. aureus with antibodies may also have contributed to the enhancing effect of serum, independently of complement, in that purified IgG promoted NET release.ConclusionsIn conclusion, complement opsonization promotes NET release induced by a variety of bacteria, including A. actinomycetemcomitans, and CR1 plays a dominant role in the process. Complement consumption or deficiency may compromise NETosis induced by some bacterial species, including A. actinomycetemcomitans. Within biofilms, the complement-inactivating abilities of some bacteria may protect other species against NETosis, while these are more vulnerable when adopting a planktonic lifestyle.",
author = "Palmer, {Lisa Joanne} and Christian Damgaard and Palle Holmstrup and Nielsen, {Claus Henrik}",
year = "2016",
month = feb,
doi = "10.1111/jre.12284",
language = "English",
volume = "51",
pages = "70--76",
journal = "Journal of Periodontal Research",
issn = "0022-3484",
publisher = "Wiley-Blackwell",
number = "1",

}

RIS

TY - JOUR

T1 - Influence of complement on neutrophil extracellular trap release induced by bacteria

AU - Palmer, Lisa Joanne

AU - Damgaard, Christian

AU - Holmstrup, Palle

AU - Nielsen, Claus Henrik

PY - 2016/2

Y1 - 2016/2

N2 - Background and ObjectivesNeutrophil extracellular trap (NET) release has generally been studied in the absence of serum, or at low concentrations of untreated or heat-inactivated serum. The influence of serum complement on NET release therefore remains unclear. We examined the DNA release induced by Staphylococcus aureus and three oral bacteria: Actinomyces viscosus, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum subsp. vincettii.Material and MethodsBacteria-stimulated NET release from the neutrophils of healthy donors was measured fluorometrically. Various complement containing and complement blocking conditions were used, including heat inactivation of the serum and antibody blockade of complement receptors 1 (CR1, CD35) and 3 (CR3, CD11b/CD18).ResultsWhile the presence of serum markedly enhanced NET release induced by S. aureus, A. actinomycetemcomitans, and to a lesser extent by A. viscosus, there was no enhancement of NET release induced by F. nucleatum. The serum-mediated enhancement of NET release by A. actinomycetemcomitans was neutralized by heat inactivation of serum complement, while this was not the case for S. aureus. Blockade of CR1, significantly reduced NET release induced by S. aureus, A. actinomycetemcomitans and A. viscosus, while blockade of CR3, had no effect. However, opsonization of S. aureus with antibodies may also have contributed to the enhancing effect of serum, independently of complement, in that purified IgG promoted NET release.ConclusionsIn conclusion, complement opsonization promotes NET release induced by a variety of bacteria, including A. actinomycetemcomitans, and CR1 plays a dominant role in the process. Complement consumption or deficiency may compromise NETosis induced by some bacterial species, including A. actinomycetemcomitans. Within biofilms, the complement-inactivating abilities of some bacteria may protect other species against NETosis, while these are more vulnerable when adopting a planktonic lifestyle.

AB - Background and ObjectivesNeutrophil extracellular trap (NET) release has generally been studied in the absence of serum, or at low concentrations of untreated or heat-inactivated serum. The influence of serum complement on NET release therefore remains unclear. We examined the DNA release induced by Staphylococcus aureus and three oral bacteria: Actinomyces viscosus, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum subsp. vincettii.Material and MethodsBacteria-stimulated NET release from the neutrophils of healthy donors was measured fluorometrically. Various complement containing and complement blocking conditions were used, including heat inactivation of the serum and antibody blockade of complement receptors 1 (CR1, CD35) and 3 (CR3, CD11b/CD18).ResultsWhile the presence of serum markedly enhanced NET release induced by S. aureus, A. actinomycetemcomitans, and to a lesser extent by A. viscosus, there was no enhancement of NET release induced by F. nucleatum. The serum-mediated enhancement of NET release by A. actinomycetemcomitans was neutralized by heat inactivation of serum complement, while this was not the case for S. aureus. Blockade of CR1, significantly reduced NET release induced by S. aureus, A. actinomycetemcomitans and A. viscosus, while blockade of CR3, had no effect. However, opsonization of S. aureus with antibodies may also have contributed to the enhancing effect of serum, independently of complement, in that purified IgG promoted NET release.ConclusionsIn conclusion, complement opsonization promotes NET release induced by a variety of bacteria, including A. actinomycetemcomitans, and CR1 plays a dominant role in the process. Complement consumption or deficiency may compromise NETosis induced by some bacterial species, including A. actinomycetemcomitans. Within biofilms, the complement-inactivating abilities of some bacteria may protect other species against NETosis, while these are more vulnerable when adopting a planktonic lifestyle.

U2 - 10.1111/jre.12284

DO - 10.1111/jre.12284

M3 - Journal article

C2 - 25900429

VL - 51

SP - 70

EP - 76

JO - Journal of Periodontal Research

JF - Journal of Periodontal Research

SN - 0022-3484

IS - 1

ER -

ID: 137200628